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Abstract—Issue Tracking Systems (ITS) such as Bugzilla can be
viewed as Process Aware Information Systems (PAIS) generating
event-logs during the life-cycle of a bug report. Process Mining
consists of mining event logs generated from PAIS for process
model discovery, conformance and enhancement. We apply pro-
cess map discovery techniques to mine event trace data generated
from ITS of open source Firefox browser project to generate and
study process models. Bug life-cycle consists of diversity and vari-
ance. Therefore, the process models generated from the event-logs
are spaghetti-like with large number of edges, inter-connections
and nodes. Such models are complex to analyse and difficult to
comprehend by a process analyst. We improve the Goodness
(fitness and structural complexity) of the process models by
splitting the event-log into homogeneous subsets by clustering
structurally similar traces. We adapt the K-Medoid clustering
algorithm with two different distance metrics: Longest Common
Subsequence (LCS) and Dynamic Time Warping (DTW). We
evaluate the goodness of the process models generated from the
clusters using complexity and fitness metrics. We study back-
forth & self-loops, bug reopening, and bottleneck in the clusters
obtained and show that clustering enables better analysis. We
also propose an algorithm to automate the clustering process -
the algorithm takes as input the event log and returns the best
cluster set.

Index Terms—Bug Tracking System, Clustering, Mining Soft-
ware Repositories, Process Mining, Process Model Fitness Metric,
Process Model Structural Complexity

I. RESEARCH MOTIVATION AND AIM

Software Process Intelligence (SPI) is a field which involves

tools, techniques and methods for mining and analysis of soft-

ware processes. SPI is related to Business Process Intelligence

(BPI) techniques. BPI focused on business processes but the

focus of SPI is on software processes and its applicability to

Software Engineering (SE). SPI has diverse applications (refer

to the related work section of the paper). Some of the business

applications of process mining on software repositories or SPI

are: uncovering runtime process models, observing project

key indicators and computing correlation between product

and process metrics, discovering process inefficiencies and

inconsistencies, developing process cubes from process data,

extracting general visual process patterns for effort estimation

and analyzing problem resolution activities [1][2][3][4][5] [6].

Several SE processes such as issue or defect resolution

are flexible and consists of several process variants (that are

adhoc and unstructured) and a wide spectrum of behavior.

This results in a spaghetti process model consisting of a large

number of activity or task nodes as well as a large number of

relations (or directed edges) between these nodes. A spaghetti

process model is structurally complex and hard to comprehend

for a process analyst. Trace clustering is a technique which

has been applied on business process logs to split a given

event-log into homogenous subsets from which process models

are uncovered. Trace clustering has shown to improve the

comprehensibility of process models in environments which

allow process flexibility and large number of variants. The

research motivation of the study presented in this paper is to

investigate the application of trace clustering in the domain

of SPI and process mining software repositories. The specific

research aim of the work presented in this paper are the

following:

1) To study the problem of spaghetti process models in

the domain of software defect and issue resolution by

conducting a case-study on open-source Firefox browser

project.

2) To propose a trace clustering technique based on group-

ing sequential data and apply it on issue tracking system

dataset of a large, complex and log-lived open-source

project. To investigate the effectiveness of the proposed

trace clustering technique in reducing the structural

complexity and enhancing the process model compre-

hensibility for a process analyst.

3) To study self-loops, back-and-forth, issue reopen and

bottlenecks on the discovered process models from the

homogeneous subset output of trace clustering and illus-

trate its benefits in the domain of SPI using a real-life

case-study.
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Fig. 1: Architecture Diagram and Data Processing Pipeline for Anvaya Framework (Clustering-Based Approach for Improving

the Goodness of Software Process Models Derived from Event-Logs).

II. RESEACH FRAMEWORK AND SOLUTION APPROACH

Figure 1 shows the architecture diagram and the 4 step data

processing pipeline for the Anvaya Framework. The first step

consists of extracting Issue Tracking System (ITS) data for

the Firefox project using the Bugzilla REST API (an HTTP

version of its XMLRPC and JSONRPC APIs)1 and saving

it in a MySQL Database. We extract the complete history

(life-cycle) of all closed bugs. The history consists of five

fields: Who, When, What, Removed and Added. An event in

an event-log for a process model discovery algorithm requires

a minimum of four fields: Case ID (or the Trace ID for the

process instance), Actor, Timestamp and Activity. We map

the ITS Issue ID as the Case ID, Who as Actor, When as

Timestamp and a combination of What, Removed and Added

as Activity.

We convert the history into an Event-Log table consisting

of three columns [Case Id, Timestamp and Activity] where

Activity column consists of the Activity-ID corresponding

to What, Added and Removed in the Activity-Definition

Table I. We extract, label and output all the unique activities

from the Bugzilla history into the Activity-Definition Table

I. For labelling, we use a three letter code which reflects

and indicates the activities performed. We identify 81 unique

activities in our dataset. Due to limited space, we present

the count and description of only 11 unique Activity-IDs

in Table I. We structure the Event-Log data in increasing

order of Case IDs and activities within a case instance in

increasing order of timestamp. We transform the data into

a sequential format since we are applying sequential data

clustering. We adapt the K-medoid algorithm to cluster the

1https://wiki.mozilla.org/Bugzilla:REST API

sequential data using two different distance metrics: Longest

Common Subsequence (LCS) and Dynamic Time Warping

(DTW). Output of this step is a set of k clusters. The clustering

algorithms are explained in Section IV. We generate a single

process model from the entire event-log data as well as for

each cluster obtained in the previous step using a process

mining tool Disco2 that uses the fuzzy miner algorithm [7]. We

choose Disco because of its ability to manage large event logs

and produce complex models. We evaluate the goodness of

these process models using cyclomatic complexity and fitness

metrics. The last step of Anvaya framework is the Analytics

Step where we study and mine useful information from the

process models generated from the clusters and show benefits

of trace clustering in analysis of back-forth & self loops, bug

reopening, and bottlenecks.

III. EXPERIMENTAL DATASET

TABLE II: Experimental Dataset Details (Mozilla Firefox

Project)

Attribute Value
Project Firefox
First Issue Report Date 1 January 2013
Last Issue Report Date 31 December 2013
Data Extraction Date 16 October 2014
Number of Open Issues 3399
Number of Closed Issues Used 11804
Number of Activities in Closed Issues 81
Number of Events Reported for Closed Bugs 178331

We extract close bug report data for Firefox Browser

because closed bugs have completed their lifecycle. We do

2Disco is a process mining toolkit for which we obtained the academic
license.
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TABLE I: Count and Description of 11 out of 81 Unique Activities in the Experimental Dataset.

Activity Acronym Count Description

Assigned To ASS 4274 Bug is assigned to the resolver by the triager.

Carbon Copy CCC 48387 Adding/Removing people in addition to Reporter, Resolver and QA Contact to the CC

list of the bug in order to notify them about the bug’s progress.

Custom Field Blocking CFB 573 Nominating the bug to stop a release by setting the appropriate blocking flag3.

Is Confirmed ISC 1106 Confirming the bug to be true i.e. issue raised is actually a bug.

QA Contact Assigned QAC 1271 Contacting Quality Assurance agent for either confirming the bug or verifying the fix.

Status New Resolved SNR 4492 The bug status changes from New where it was processed to Resolved where resolution

has been performed and is awaiting verification by Quality Assurance.

Status Resolved Reopened SRR 702 The bug status changes from Resolved where its resolution was set to Reopened where

the bug is reopened as the resolution is found to be incorrect.

Status Resolved Verified SRV 731 The bug status changes from Resolved where its resolution was set to Verified where

Quality Assurance has looked at the bug and its resolution and agrees that the appropriate

resolution has been performed.

Status Unconfirmed Resolved SUR 5334 The bug status changes from Unconfirmed where it was validated whether the bug is

true to Resolved where resolution has been set.

Summary Modified SUM 2362 The short sentences describing what the bug is about are added/removed.

Target Milestone Defined TAR 3787 Setting the milestone field while the bug is open to indicate the release for which the

fix is planned.

not analyse open bug report data because such bugs are still

in the pipeline, work is being done on them, and we don’t

know what shape they are going to take. The lifecycle of a

bug consists of several stages. The initial status of the bug

is either New or Unconfirmed. From any of these two states

it can either go to Assigned state where it is assigned to a

resolver by the triager or can be directly Resolved. A bug can

have seven resolutions: Wontfix, Worksforme, Invalid, Fixed,

Remind, Duplicate and Later3. Here onwards, the bug is often

Verified and Closed or can be Reopened. A bug is said to be

closed if its status has been set to either Verified or Resolved.

Table II shows the experimental dataset details for the Mozilla

Firefox project. We conduct experiments on publicly available

dataset so that our approach or results can be replicated and

used for benchmarking and comparison. We share our dataset

and associated files by creating a public repository on GitHub4

IV. CLUSTERING

We adapt the K-medoid clustering algorithm [8] [9] to

cluster the sequential traces using two different distance met-

rics. The first distance metric that can be used to compute

the similarity between two traces is the Longest Common

Subsequence metric (LCS Similarity) [10] [11] [12]. Since

each trace can be viewed as a sequence of characters, we

use the LCS algorithm to determine the length of the longest

common sequence of characters which need not be consecutive

but follow a left to right ordering. Longer the length of LCS,

3https://bugzilla.mozilla.org/page.cgi?id=fields.html
4https://github.com/ashishsureka/anvaya

more similar will be the traces. The second distance metric we

use is Dynamic Time Warping (DTW Similarity) [13] [14]

which is used to find similarity between sequences that are

structurally similar but can be on a different timescale. Let two

sequences be S1 and S2. Warping path consists of index pairs

(i,j) if DTW associates S1[i] with S2[j]. This path is subjected

to certain restrictions namely, monotonicity, continuity and

boundary condition [15]. Out of the many warping paths,

an optimal warping path is the one that minimizes the total

cost [15]. Warping distance is the summation of element wise

distance between S1[i] and S2[j] over all pairs of (i,j) present

in the optimal warping path5. We assign a cost (distance)

0 if S1[i]=S2[j], otherwise 1 is assigned. Because of such

cost assignment, lower the warping distance, more similar are

the traces. So, in k-medoid algorithm a non medoid trace is

associated to a medoid with highest LCS similarity or lowest

DTW similarity. Algorithm 1 describes the steps to compute

k clusters using our proposed technique.

V. PROCESS DISCOVERY & EVALUATION

We discover process models from the entire event log as

well as the event log of the clusters using Disco. A node

in the process model obtained from Disco represents an

Activity while an edge represents transition from one activity

to another. The process model has a starting node (represented

by a triangle symbol), end node (represented by a stop symbol)

and activity nodes containing the name and absolute frequency

of the activity. Dashed arrows point to activities that occur at

5http://cs.bc.edu/ãlvarez/Algorithms/Notes/dtw.html
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Algorithm 1: k Medoid Clustering

Data: Event log in sequential data format

Result: k clusters

1 input the value of number of clusters to be formed k.

2 read the input event log

3 randomly select k traces as initial medoids.

4 foreach non medoid trace ti do
5 foreach medoid trace mi do
6 calculate similarity score of ti and mi using LCS

Similarity lcsi or DTW Similarity dtwi

7 assign ti to mi with highest lcsi or lowest dtwi.

8 foreach medoid trace m do
9 foreach non medoid trace o do

10 swap m and o
11 compute the total similarity score (cost) of the

configuration using either lcsi or dtwi

12 select the configuration with the highest cost while using

LCS Similarity and lowest cost while using DTW

Similarity.

13 Steps 4 to 12 are repeated till there is no change in the

medoids

the very beginning or very end of the processes. Transitions

between activities are represented by solid directed arrows

with the absolute frequency value written over them. The

color of nodes and thickness of edges is proportional to their

frequency. Darker shade and larger thickness signifies a higher

frequency count. Figure 2a shows a process model generated

from Disco.

We evaluate the goodness of process models using two met-

rics defined in the field of process mining, namely complexity

and fitness. Process models discovered from clusters should

exhibit low degree of structural complexity and high-degree

of fitness.

A. Complexity

Complexity has unwanted effects on understandability, com-

prehensibility and correctness of process models [16]. Out

of the many complexity metrics proposed in literature, we

use McCabe’s cyclomatic number which represents the total

number of independent paths possible in the process model

[17]. The pseudocode to determine the cyclomatic number of

process models obtained from Disco is given in Algorithm

2. The Xml format input of the process model is needed

as it carries all the relevant information namely, the number

of edges and nodes which is required for calculating the

complexity. The higher the complexity value returned by this

algorithm, higher will be number of independent paths and

thus more complex will be the model.

B. Fitness

One of the major applications of Process Mining is to

determine the gaps between the real world as recorded in the

Algorithm 2: Complexity

Data: Xml format input of the process model

Result: Complexity of the process model

1 read number of edges e
2 read number of nodes n
3 complexity=e-n+2

Algorithm 3: Fitness

Data: Xml format input of the process model and Event

log in sequential format.

Result: Fitness of the process model.

1 read Xml format input file.

2 foreach transition between a source ni and target node

nj do
3 adjacency matrix ani,nj

=1

4 read the input event log

5 foreach bug id bi do
6 add each activity to trace ti
7 if ti is unique then
8 add it to uiquetrace[]
9 Count its frequency Fi in the event log

10 foreach entry ti in uniquetraces[] do
11 V alidi=1

12 j=1

13 while j<length of ti do
14 if ati[j],ti[j+1] �= 1 then
15 V alidi=0

16 break

17 else
18 j ++

19 foreach entry ti in uniquetraces[] do
20 FreqValidProduct=FreqValidProduct+Fi*V alidi
21 FreqSum=FreqSum+Fi

22 Fitness=FreqValidProduct/FreqSum

event log and the process model6. The fitness metric is used

to determine the extent to which an event log conforms to the

process model generated from that log and vice versa [18]. It

can be measured by determining the fraction of traces present

in the event log that can be completely replayed by the process

model from start to end. The pseudocode to determine the

fitness of the process model is given in Algorithm 3 [19]. The

fitness of a process model can take any value on a scale of

0 to 1. Fitness value 1 (maximum) indicates that the process

model is perfectly aligned with the event log while value 0
(minimum) indicates that the model completely deviates from

reality since none of the traces present in the event log are

shown in the process model.

6http://www.processmining.org/online/conformance checker
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(a) A Process Model example (b) Main Model

Fig. 2: (a) A Process Model generated from Disco with labels as Absolute Frequency and the arrow thickness & node color

proportionate to this frequency. (b) Complex Process Model generated from the the entire event log consisting of 1615 traces.

VI. EXPERIMENTAL RESULTS

To validate the clustering, we apply k-medoid algorithm

using LCS and DTW similarity metrics on 1615 process-

instances and obtain 6 clusters. Figure 2b shows the complex,

spaghetti-like, hard to comprehend process model generated

from the entire event log (referred as the main model through-

out the paper) obtained from Disco at 100% activity and

12.2% path resolution. The complexity and fitness of main

model and all the clusters is shown in Table III. We see that

on an average the complexity in a cluster has been reduced

by 40.03% and 40.96% while using LCS and DTW metrics

respectively clearly showing that clusters are much easier to

comprehend and analyse. We notice that process models of

66.67% clusters in case of LCS and 83.34% clusters in case

of DTW have a better one to one mapping with the event log

and thus show a better fitness value. Throughout our work in

further sections, we use LCS distance metric for analysis.

VII. PROCESS MODEL CLUSTER ANALYSIS

In the following section consumable results, actionable

information and valuable insights are extracted from all the six

clusters obtained using LCS metric. We show that clustering

facilitates easier identification of inconsistencies and imperfec-

tions and better understanding of the process that would not

have been possible by studying the complex spaghetti model.

A. Self-loop Analysis

Study of self-loops is important since such loops indicate

intensive problems [20] which are often difficult to detect

because it may seem that at each stage some useful work

is being done though actually no progress is being made and

the bug is just getting transferred [20]. In a process model, a

self-loop can be defined as the transition A→A i.e. a transition

that begins and ends at the same activity. Such anti-patterns

TABLE III: Cyclomatic Complexity along with Percentage

Decrease in Complexity of Clusters (DCC) and Fitness Metric

of the Spaghetti Model Generated from the entire Event Log

as well as the Six Clusters Generated by K-medoid Algorithm

using LCS and DTW as the Distance Metrics

LCS DTW

Cyclomatic
Complexity

(DCC)
Fitness

Cyclomatic
Complexity

(DCC)
Fitness

Main Model 143 (-) 0.017 143 (-) 0.017

Cluster 1 75 (47.5 %) 0.178 89 ( 37.7 %) 0.004

Cluster 2 82 (42.6 %) 0.085 93 ( 34.9 %) 0.059

Cluster 3 106 (25.8 %) 0.004 63 ( 55.9 %) 0.328

Cluster 4 96 (32.8 %) 0.070 97 (32.1 %) 0.063

Cluster 5 83 (41.9 %) 0.015 78 (45.4 %) 0.052

Cluster 6 72 (49.6 %) 0.208 86 (39.8 %) 0.078

are undesirable and cause redundancy in the bug’s trace. Just

looking at the count of self-loops of an activity in the event

log of spaghetti model is not enough since it might happen

that most of these self-loops are occurring in traces of a few

bugs in which case we cannot generalize and say that this

particular activity causes majority of self-loops in the system.

Doing self-loop analysis after clustering similar traces helps

us to discover if self-loop of an activity appears only in certain

kinds of bugs or if it appears in majority in all the traces. First

entry in each cell of Table IV denotes the frequency of self-

loop of the activity specified in the first cell of the same row.

”-” indicates absence of loop. Due to limited space only some

of the activities are represented in Table IV.

1) Self-loop frequency of activity Carbon Copy (CCC) is
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TABLE IV: Self Loops and Back-Forth Analysis

Activity Main Model Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
ASS 28, CCC/15 2, ATT/1 5, CCC/1 8, CCC/6 8, QAC/3 5, CCC/7 -,-
ATT 266, FLA/116 24, FLA/6 20, FLA/6 102, FLA/40 48, FLA/18 70, FLA/43 2, FLA/3
BLO 152, CCC/39 4, CCC/3 18, CCC/4 72, DEP/18 20, CCC/4 38, CCC/11 -, CCC/2
CCC 6776, FLA/250 524, SNR/60 875, WHI/37 3119, DEP/141 1345, SNR/151 871, FLA/60 42, SUR/53
COM 2, QAC/3 -,- -, QAC/1 1, QAC/1 1, QAC/1 -, CCC/1 -,-
DEP 704, CCC/110 9, SNR/2 21, CCC/3 576 , CCC/83 41, CCC/6 57, CCC/17 , CFL/1
FLA 1612, ATT/464 101, CCC/32 93, ATT/25 614, ATT/168 228, ATT/48 557, ATT/186 19, ATT/12
OPS 1, PLA/33 -,- -, PLA/13 -,PLA/8 1,- -, PLA/12 -,-
RES 1, SRU/2 1,- -, SRU/1 -,- -,- -,- -, SRU/1
SRR -, RFF/6 -, RFF/1 -,- -, RFF/3 -,RES/3 -, RFF/2 -, RES/1
SUM 15, CCC/27 1, CCC/2 3, CCC/1 5, CCC/11 2, CCC/12 4, ASS/1 -,-
TAR 21, CCC/26 -, CCC/1 4, CCC/1 12, CCC/10 1, FLA/2 4, CCC/11 -, ASS/1
VER 6, CCC/20 2,- -, CCC/7 1, CCC/7 -,PRO/1 1,- 2, CCC/5

high in all the six clusters with the count being as high

as 3119 in Cluster 3. This indicates that many people

including users who have no direct role to play in the bug

are added in the mailing list. Its an unhealthy practise to

repeatedly add/remove people from the mailing list and

should be avoided by adding only a few people who

are interested in receiving notifications about the bug’s

progress.

2) Many self-loops of activity Attachments (ATT: setting

attributes of file related to the bug uploaded by a user)

in clusters 3, 4 & 5 indicates that several properties of

attachment file7 associated with a bug like content-type,

description, filename, flags etc keep on changing and

attribute fields are not correctly entered by the user while

filing the bug.

3) Many recurrent loops of Activity FlagTypes (FLA) occur

in Clusters 3 and 5. Flags can be of two types: attach-

ment flags and bug flags8. Loop involving the former flag

indicates that a developer has asked other developers to

review his code implying that peer code review practice

is followed for quite a lot of bugs while loop involving

the latter type indicates that status information of the

bug is repeatedly required e.g needinfo flag is set many

times sequentially implying that the developer requires

more information about the issue raised indicating that

bugs are reported with incomplete information.

4) High Self-Loop frequency of activity Blocks (BLO)

in Cluster 3 indicates that several bugs are repeatedly

added in the Blocks field which means a lot of bugs are

discovered which depends on the current bug. Bugs in

this cluster needs to be resolved on a priority basis as

several other bugs are dependent on them.

5) Self-loop frequency of activity Depends on (DEP) is

extremely high in Cluster 3 indicating that several bugs

are identified on which the current bug is dependent. It

is interesting to note that self-loop frequency of BLO

is also high in this cluster indicating that bugs in these

clusters are either dependents or dependees.

7https://www.bugzilla.org/docs/3.0/html/api/Bugzilla/Attachment.html
8http://www.bugzilla.org/docs/2.22/html/flags-overview.html

B. Back-Forth Analysis

A back-forth loop, also known as ping pong pattern, can

be defined as a transition A→B→A i.e. a transition which

begins at activity A, goes to activity B and again ends at A.

Second entry in each cell of Table IV contains the activity

with which the activity specified in the first cell of the same

row is forming a back-forth loop maximum number of times

along with the frequency of that loop. An activity A can be in

a back-forth loop with multiple activities e.g. A→B→A with

frequency f1 and A→C→A with frequency f2 and f2 ≥ f1.

C/f2 is specified as the second entry in the cell corresponding

to Activity A in Table IV. ”-” indicates absence of loop.

Activities forming loops with high frequency can be effectively

analysed in clusters. Since bugs with similar life-cycle are

clustered together, root cause behind the occurrence of such

anti-patterns also becomes easier to identify and study.

1) Ping pong patterns that include activity Status Resolved

Reopened (SRR) are present in small numbers but are of

major interest. The resolve-reopen loop is a problematic

pattern. In Clusters 1, 3 and 5 SRR is looping with

activity Resolution Fixed (REF) which means that a

fixed bug is reopened and again fixed. It happens when

the resolution of a resolved bug is found to be incorrect.

Such loops are undesirable because the average time to

resolve a re-opened bug can be twice as long as the time

to resolve a non re-opened bug [21].

2) Activity Depends On (DEP) forms a back-forth loop

with Carbon Copy (CCC) 83 times and CCC forms a

loop with DEP 141 times in Cluster 3 because the teams

solving other bugs on which the current bug is dependent

need to be informed about the bug’s progress so that they

can be included in the decision making process of the

current bug. Such loops can be reduced by adding just

a few people from other teams in the CC list like the

team leader instead of all team members.

3) Important attributes of the bug like version (VER),

operating system (OPS), summary (SUM) and target

milestone (TAR) are involved in ping pong patterns

indicating that it takes repeated efforts to conclude

the values of these fields. Bug reporters should be

encouraged to write informative summary of the issue
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Fig. 3: Histograms showing percentage of cases Reopened for

different states (Activities) across the 6 clusters.

and specify fields such as OS and version of the software

in which the bug is occurring while filing the bug.

C. Reopen Analysis

Bug reopening refers to the act of changing the status of

the bug that was once resolved to Reopened (SRR) as the

resolution was found to be incorrect forcing the bug to traverse

its lifecycle again. Bug reopening is equally important in

open source systems like Bugzilla as it is in closed source or

commercial systems [22]. It increases the costs of maintaining

the software, lessens the user-perceived quality of the system

and leads to extra and needless rework by already loaded

developers [21]. Analysis of factors leading to bug reopening

helps in improving the quality of bug fixing process and

countering all these problems. We take into account the

following factors [19] [21] [22] that contribute in reopening

of bugs:

1) Verified (SRV): A bug verified by a Quality Assurance

agent may get reopened if some useful information

about the bug becomes available that demands to have

it reviewed again.

2) Fixed (REF): A fixed bug may have its reopening if the

fix proposed seems to have faults and is not complete

and entirely correct solution.

3) Duplicate (RED): If the bug is not studied deeply and

few of its symptoms match with some already existing

bug, it is incorrectly assumed to be the case of duplicacy.

4) Wontfix (REX)/ Invalid (REN)/ Incomplete (REI)/

Worksforme (REW): There are high chances of re-

openings if the developer was not able to fix the bug

(Wontfix), issue raised was not categorized as a bug

(Invalid), bug was reported with incomplete information

(Incomplete) or if it was not successfully reproduced

(Worksforme).

We believe that clustering helps in analysing whether the

reopening due to an activity is happening globally throughout

the main model or in a certain set of similar bugs.

1) Absence of bug re-opening due to Verified (SRV) in

Clusters 1, 2 and 6 is supported by the fact that a

Quality Assurance agent (QAC) confirms that a proper

fix is achieved. While significant re-opening due to Fixed

(REF) in all the clusters especially Clusters 3 and 5
indicates bad understanding and management in fixing

the bugs in previous releases, leading to loss of time

in analysing and correcting the same bug again in the

current release (regression bugs). This can be avoided

if proper testing and verification of the fix proposed by

the developer is done prior to closing the bug.

2) Reopening after activity REW is contributed by 5 out

of 6 clusters suggesting that re-opening due to Wontfix

is occurring globally throughout the dataset and is not

limited to some similar types of bugs. Bugs entering

into the system are initially difficult to reproduce, thus

are left for future references/information using which

they will be reopened again. This can be avoided by

extracting all possible information about the bug from

the reporter to improve understanding before setting

its resolution. Also, reporters should be encouraged to

describe the bug in as much detail as possible and form

for filing a bug should contain various fields that can

capture the information about the issue raised in detail.

3) Through clustering we are able to segregate those bugs

in Cluster 4 which get reopened because of incorrectly

getting marked as Duplicate (RED) indicating that the

bugs are not properly examined before their resolution is

set. Process analyst can analyse such bugs to determine

whether the duplicacy is due to similar keywords and

title used in describing the bug or if the symptoms of

the bugs were not studied deeply leading to failure in

identification of the root cause of the issue.

4) One reason behind large number of reopenings due to

Worksforme and Wontfix in Cluster 3 is underestimation

of priority of bugs which brings attention to the fact that

there is a need to establish clear guidelines and policies

to effectively decide priority of a bug.

D. Bottleneck Identification

Bottleneck refers to those areas (activities, transitions, paths)

of process model that consume comparatively more time than

rest of the system causing the entire process to slow down.

Identification of principal factors constraining the process

speed can help a process analyst in working upon the causes

that deter the performance of a process. We compute the mean

time taken for every transition in main model as well as all the

clusters. For analysis, we consider transitions taking maximum

amount of time and discover severe bottlenecks present in the

models.

1) Figure 4 shows percentage of bottlenecks taking mean

time more than 500 and 1000 days in main model and

the 6 clusters. From Figure 4, we observe that percentage
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Fig. 4: Histograms showing percentage of Bottlenecks identi-

fied in the Main Model and 6 clusters.

of bottlenecks taking more than 500 days (mean value) is

greater in Clusters 1, 2, 4 and 6 as compared to the main

model. While for duration greater than 1000 days (mean

value), each cluster has higher percentage of bottlenecks

than the main model. It is due to the absolute count

of transitions which is less in a cluster than the main

model producing greater mean value for the clusters.

Thus, bottlenecks that are not quite evident in the main

model are clearly visible in the clusters.

2) Set of transitions, taking mean time greater than 1000

days, found in both the main model as well as clusters

are:

a) SRV → CFB, SRV → QAC implying that after a

bug is verified (SRV), there is a large gap before

any other actions like contacting Quality Assurance

agent (QAC) and setting any blocking flag (CFB)

are done. This indicates that once a bug is verified

it is not acted upon much.

b) ISC → SNR suggesting huge delay between the

time a bug is confirmed to be true (ISC) to the time

appropriate actions are taken to resolve it (SNR)

indicating that in some cases it takes a lot of time

to understand and confirm that the issue raised is

actually a bug. This confirmation step (ISC) can be

accelerated to make the system faster.

3) The bottlenecks found in clusters (not observed in main

model) taking mean time greater than 1000 days are:

a) Some of the activities performed before changing

the status of bug from New to Resolved (SNR) like

ASS and ATT take over 1200 days suggesting large

delays in assigning the bug to a resolver (ASS)

and studying the associated attachments (ATT).

Many a times the attachments are obsolete and

their attributes are not defined properly leading

to wastage of time in asking the user to upload

the attachment again and resetting their attribute

values. Also, delay in assigning the bug to a

developer needs to be removed by having a proper

procedure to quickly select an appropriate resolver

for the bug.

b) Our analysis shows that setting the resolution to

Incomplete, Worksforme and Wontfix takes a lot

of time as transitions CCC → REI, CCC → REW,

CCC→ REX are taking more than 3 years. Higher

efficiency is required to identify such cases so that

their resolution can be set quickly. Reopening of

bugs with these resolutions also takes considerable

amount of time indicating that reasons of reopening

due to these factors need to be studied in detail with

higher priority.

c) Changing the status of bug from Unconfirmed to

Resolved is taking 4 years (indicated by transitions

SUM→ SUR, OPS→ SUR) because important at-

tributes of bug like summary (SUM) and operating

system (OPS) were not properly defined by the bug

reporter, so determining their values took a lot of

time.

VIII. DETERMINING THE BEST CLUSTER SOLUTION

Clustering can give many different solutions depending

upon the algorithm used, initial cluster centers chosen, number

of iterations and number of clusters specified. Out of the many

possible solutions, we select the one where clusters have low

complexity and high fitness value for enabling better analysis.

To test the proposed algorithm, experimental dataset described

in Table II is split into four equal sub datasets and each subset

is experimented with the proposed algorithm using k-medoid

with LCS similarity metric. Algorithm 4 runs the clustering

algorithm thrice over the input event log to select the best

cluster set. Table V gives the G Ratio of all the three iterations

performed on all four sub datasets as well as the iteration

whose solution set is determined to be the best by our proposed

algorithm.

IX. RELATED WORK AND RESEARCH CONTRIBUTIONS

Real life event logs are diverse, unstructured and complex

leading to formation of ’Spaghetti Models’. The problem

of spaghetti process models has been discussed in [23] and

[24]. Several techniques have been proposed in literature to

cluster traces to deal with complex process models. Bose et al.

propose a context aware approach to cluster process instances

based on Levenshtein distance [25]. In the technique substi-

tution, insertion and deletion costs of symbols are derived for

similarity. The authors evaluate the proposed algorithm on the

telephone repair process event log and show that the approach

is able to generate clusters with high degree of fitness and com-

prehensibility when compared to other approaches [25]. In [23]

Aalst et al. apply combination of abstraction and clustering

techniques to simplify spaghetti-like models discovered using

process mining techniques from unstructured and complicated
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Algorithm 4: Automate Clustering

Data: History data of bugs
Result: Best cluster set

1 Perform the preprocessing steps and obtain the sequential data format

from the history of bugs extracted

2 generate 3 cluster sets S1, S2 and S3 using k-Medoid Clustering that

uses LCS/DTW similarity for input k value

3 foreach cluster set Si consisting of m clusters do
4 for j← 1 to m do
5 discover process model Pj

6

C scorei =

m∑

j=1

Complexity(Xml format
input of Pj) ∗ tj

tj

F scorei =

m∑

j=1

Fitness(Xml format input of
Pj , Eventlog in sequential
format of cluster Cj) ∗ tj

tj

G Ratioi = F score/C score

where tj is total traces in event log of cluster Cj

7 return the cluster set Si with the maximum G Ratio.

TABLE V: Automated Clustering Algorithm Analysis

Dataset
Iter-

ation

Weighted
Com-

plexity

Weighted
Fitness

G Ratio Result

1 1 90.98 0.190 2.08× 10−03 -

1 2 92.38 0.158 1.71× 10−03 -

1 3 90.91 0.227 2.49× 10−03 Selected

2 1 99.43 0.275 2.08× 10−03 -

2 2 100.99 0.205 2.7× 10−03 Selected

2 3 105.8 0.213 2.01× 10−03 -

3 1 92.05 0.125 1.35× 10−03 -

3 2 91.39 0.106 1.15× 10−03 -

3 3 93.47 0.218 2.33× 10−03 Selected

4 1 81.36 0.394 4.84× 10−03 Selected

4 2 85.57 0.270 3.15× 10−03 -

4 3 85.40 0.211 2.47× 10−03 -

processes [23]. They use significance and correlation metrics

to simplify the processes by clustering less significant but

highly correlated data [23]. Ferreira et al. propose a sequence

clustering approach where each cluster is represented by a

first-order Markov chain. [26]. Veiga et al. extended this work

by using two dummy states (input and output state) with

the Markov chain model for depicting the probability for an

event to be the first or last in the sequence [24]. They also

suggest several preprocessing steps done before clustering to

eliminate undesirable events from the event log [24]. Weerdt

et al. propose a new tecnique called ActiTraC (active trace

clustering) for trace clustering which uses elements of active

learning in an unsupervised environment [27]. The proposed

algorithm lessens the divergence between the clustering bias

and the evaluation bias and improves the accuracy and com-

plexity of process models [27]. Song et al. [28] propose a

trace clustering technique that uses several perspectives of

traces such as performance, transition, case and event attributes

organised as a feature vector. Conformance measurement done

through process mining in business processes has been shown

in [18], [29] and [19]. Gupta et al. conduct two phase surveys

and interviews with managers in a large, global, IT company to

identify the process challenges encountered by them that can

be addressed by novel applications of process mining [30]. In

context to existing work, the paper makes the following novel

contributions:

1) Improving the goodness (complexity and fitness) of

process models by splitting the event-log into homo-

geneous subsets by clustering structurally similar traces

by adapting the the K-Medoid algorithm.

2) Use of Longest Common Subsequence (LCS) and Dy-

namic Time Warping (DTW) distance metrics in the

adaptation of K-medoid algorithm.

3) Illustrating the benefits of trace clustering in identifying

bottlenecks and study of back-forth & self-loops and bug

reopening.

4) An algorithm to automate clustering that returns the best

cluster set for an event log by determining the goodness

of process models.

5) An in-depth case study on the open source Firefox

browser project to investigate the effectiveness of the

proposed approach.

X. CONCLUSION

Analysing the results after mining real world unstructured

event logs that show adhoc behavior is difficult due to pro-

duction of complex spaghetti-like process models. Our work

is a contribution towards simplifying these complex models

by means of clustering so that they can be easily understood

by the process analyst. We adapt K-medoid algorithm using

two different distance metrics- LCS and DTW to obtain

clusters having good intra-class similarity. K-medoid is an

efficient clustering algorithm which is insensitive to outliers

and noisy data. Goodness of the models increase as fitness

and structural complexity is improved making the models

easier to comprehend. We demonstrate the effectiveness of our

proposed technique by performing a real life case study on

Firefox browser project. We successfully show that clustering

enables better analysis, making it easier to identify bottlenecks,

study reopening of bugs, self & back forth loops. We propose

an algorithm that returns the cluster set with highest goodness

ratio to automate the clustering process which is effectively

tested on four different datasets.
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