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Abstract. Process Aware Information Systems (PAIS) are IT systems
which support business processes and generate event-logs as a result of
execution of the supported business processes. Alpha Miner is a pop-
ular algorithm within Process Mining which consists of discovering a
process model from the event-logs. Discovering process models from large
volumes of event-logs is a computationally intensive and a time con-
suming task. In this paper, we investigate the application of paralleliza-
tion on Alpha Miner algorithm. We apply implicit multithreading paral-
lelism and explicit parallelism through parfor on it offered by MATLAB
(Matrix Laboratory) for multi-core Central Processing Unit (CPU). We
measure performance gain with respect to serial implementation. Fur-
ther, we use Graphics Processor Unit (GPU) to run computationally
intensive parts of Alpha Miner algorithm in parallel. We achieve highest
speedup on GPU reaching till 39.3x from the same program run over
multi-core CPU. We conduct experiments on real world and synthetic
datasets.

Keywords: Alpha miner algorithm - GPU - MATLAB - Multi-core
CPU - Parallel Computing Toolbox (PCT) - Parallel programming -
PAIS

1 Research Motivation and Aim

Process Mining consists of analyzing event-logs generated by PAIS for the pur-
pose of discovering run-time process models, checking conformance between
design-time and run-time process maps, analyzing the process from control
flow and organizational perspective for the purpose of process improvement and
enhancement [1]. Performance improvement of computationally intensive Process
Mining algorithms is an important issue due to the need to efficiently process
the exponentially increasing amount of event-logs data generated by PAIS. Dis-
tributed and Grid computing, parallel execution on multi-core processors and
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using hardware accelerators such as GPU are well-known solution approaches
for speeding-up the performance of data mining algorithms.

Alpha Miner algorithm is one of the fundamental algorithms in Process
Mining for discovering a process model (reconstructing causality and workflow
between activities) from event-logs consisting of process instances or traces [2].
Our analysis of the Alpha Miner algorithm reveals that the algorithm contains
independent tasks which can be split among different workers or threads and
thus we believe that the algorithm has the ability or property of paralleliza-
tion. The work presented in this paper is motivated by the need to reduce the
execution time of Alpha Miner algorithm on multi-core CPU and GPU based
hardware accelerators. The research aim of the work presented in this paper is
as follows:

1. To propose a parallel approach for Alpha Miner algorithm by designing a
decomposition strategy for partitioning the workload across multiple cores
on CPU through implicit and explicit parallelism provided by MATLAB.

2. To perform parallelization of Alpha Miner algorithm on a GPU and examine
the extent of speedup due to the hardware accelerator.

3. To investigate the efficiency and performance gain of different types of par-
allelisms (implicit, explicit, GPU) on Alpha Miner algorithm by conducting
a series of experiments on both real world and synthetic datasets.

2 Related Work and Research Contributions

Implementation of data mining algorithms on multi-core CPU and GPU proces-
sors is an area that has attracted several researchers attention. Ahmadzadeh
et al. [3] present a parallel method for implementing k-NN (k-nearest neighbor)
algorithm in multi-core platform and tested their approach on five multi-core
platforms demonstrating best speedup of 616x. Arour et al. [4] present two FP-
growth (Frequent Pattern) implementations that takes advantage of multi-core
processors and utilize new generation GPUs. Lu et al. [12] develop a method
which adopts the GPU as a hardware accelerator to speed up the sequence
alignment process. Ligowski et al. [11] uses CUDA programming environment
on Nvidia GPUs and ATI Stream Computing environment on ATI GPUs to
speed up the Smith Waterman sequence alignment algorithm. Their implemen-
tation strategy achieves a 3.5x higher per core performance than the previous
implementations of this algorithm on GPU [11]. In context to existing work
and to the best of our knowledge, the study presented in this paper makes the
following novel contributions:

1. A parallel implementation of Alpha Miner algorithm and an in-depth study
(with several real and synthetic dataset) on improving the execution perfor-
mance by using multi-core CPU.

2. A focused study on accelerating Alpha Miner algorithm through parallelism
on GPU and testing the approach on various real and synthetic datasets.
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3 Research Framework and Solution Approach

In sequential programming, there is an ordered relationship of execution of
instructions where only a single instruction executes at a particular instance
of time. On the contrary, parallel programming lets execution of multiple tasks
at the same instance of time by distributing work to different processors which
run in parallel [10]. The Alpha Miner algorithm [2] starts with finding the direct
succession relation by scanning the event-logs. For activities ‘x’ and ‘y’ if activity
‘y’ occurs immediately after activity ‘x’ in log trace direct succession relation
holds on ‘xy’. Causal (direct succession holds on ‘xy’ but not on ‘yx’), parallel
(direct succession holds both on ‘xy’ and ‘yx’) and unrelated relations (direct
succession holds neither on ‘xy’ nor on ‘yx’) are determined through direct suc-
cession relation between every two activities and stored in a footprint matrix.
All pair of sets (A,B) (A and B are sets containing distinct activities) are found
such that all activities within set A and B are unrelated to each other whereas
every activity in set A has causal relation with every activity of set B. All activ-
ities in A are connected to arcs directed to a place (represented by circle which
symbolises conditions) and from the place arcs are directed to all activities in
set B. Pair of sets (A,B) that connect maximum activities through a single place
are only retained as maximal set pairs. Set of initial and final activities which
are detected for connecting to a initial and final place respectively along with
pair of maximal sets connected through a place represent the Petri Net [7] out-
put of Alpha Miner. The algorithm can be broken into discrete and independent
tasks which can be solved concurrently. We implement parallelization on single-
threaded version of Alpha Miner algorithm by 3 kinds of parallelism supported
by MATLAB. For all the implementations, we encode activity names in the input
event-log by unique positive integers.

3.1 Sequential Single Threading on CPU

A single-threaded program runs sequentially. Serial implementation done on
a single thread provides a base for evaluating comparisons from other imple-
mentations (multi-threaded, parfor). To prevent the trigger of implicit multi-
threading by MATLAB, we enable only a single thread in the program by using
maxNumCompThreads (1). We use none of the inbuilt multi-threaded functions®
available in MATLAB for single-threaded implementation. As shown in Fig. 1(a)
the main functionalities in Alpha Miner algorithm like determining all the direct
succession relations by scanning the entire event- log, building the footprint
matrix and determining the maximal set pairs are implemented through for
loop. Use of for loops makes the program work sequentially and slower. At each
iteration of for loop conditions are checked and branching occurs adding to more
overheads and affecting the code performance.

! http://www.mathworks.com /matlabcentral /answers/95958-which-matlab-
functions-benefit-from-multithreaded-computation.
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for i=1:traces parfor i=l:traces
%Find DirectSuccession %Find DirectSuccession
end end
for i=1:activities parfor i=l:activities
%Build Footprint %Build Footprint
end end
for i=1:activities parfor i=l:activities
%Find Mazximal Set Pairs %Find Maximal Set Pairs
end end

(a) Single-threaded (b) parfor implementation.

implementation.

[m n]=size (InputFile);
ShiftedFile=InputFile (1:m,2:n);
DirectSuccession=arrayfun (@QCantorPairing , InputFile , ShiftedFile );

(c) Multi-threaded implementation.

Fig. 1. Fragments of alpha miner algorithm implementation in MATLAB Code showing
programming constructs for Multi-core CPU and GPU implementations.

3.2 Explicit Parallelism on CPU

MATLAB has Parallel Computing Toolbox (PCT)? for applying external par-
allelism over set of independent tasks. parfor® in PCT allows execution of the
loop iterations in parallel on workers. Workers are threads that are executed
on processor cores. Using parfor, a separate process is created for each worker
having its own memory and CPU usage. There are communication overheads
associated with setting the workers and copying the data to each of them.
When parfor is executed, the MATLAB client coordinates with the MAT-
LAB workers which form a parallel pool. The code within the parfor loop is
distributed to workers executing in parallel in the pool and the results from all
the workers are collected back by the client?. The body of the parfor is an
iteration which is executed in no particular order by the workers. Thus the loop
iterations are needed to be independent of each other. If number of iterations
equals the number of workers in the parallel loop, each iteration is executed by
one worker else a single worker may receive multiple iterations at once to reduce
the communication overhead®. To start a pool of workers parpool (profilename,
poolsize)S is used where name of the parallel pool forming a cluster is to be
specified in the ‘profilename’ and size of the cluster in the ‘poolsize’ argument.

2 http://in.mathworks.com/products/parallel-computing/.

3 http://in.mathworks.com /help/distcomp/parfor.html.

* http://cn.mathworks.com/help/pdf_doc/distcomp/distcomp.pdf.

5 http://in.mathworks.com/help/distcomp/introduction-to-parfor.html.
5 http://in.mathworks.com /help/distcomp/parpool.html?refresh=true.
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We identify following 3 for loops (amongst several for loops within the algo-
rithm) executing the main functionalities of the algorithm and also containing
the code body that is independent at each iteration (a condition for parallel
execution) enabling us to apply parfor:

1. Determining direct succession relation: The task of discovering the pair
of activities having direct succession relation can be distributed to different
workers with first worker calculating the direct succession relations from one
trace, second worker from some other trace and so on. As shown in Fig. 1(b),
first parfor loop distributes the total ‘traces’ present in input file among
various workers. Results can be gathered from each worker, redundancies can
be removed and unique pair of activities having direct succession between
them can be deduced.

2. Building up the footprint matrix: The process of creating the footprint
can be broken into independent work of finding all different relations (causal,
paralllel, unrelated) of an activity with the rest of the activities by a worker.
In second parfor loop of Fig. 1(b), each worker upon receiving a activity from
total unique ‘activities’ computes all relations of the received activity with
the remaining activities.

3. Forming maximal set pairs: The function to discover maximal set pairs
can also be broken into smaller independent tasks of determining all the
maximal set pairs (A,B) by a worker that can be formed by including a
particular activity in set A. In third parfor loop of Fig.1(b) a worker on
receiving an activity from total unique ‘activities’, computes all the possible
maximal set pairs (A,B) that can be formed by including the received activity
in set A. With each worker doing the same simultaneously, we can gather the
results faster and after removing redundancies we can get distinct maximal
set pairs.

Through experiments we observe that both the footprint matrix building and
maximal set pair generation do not consume much time (less than 1% of pro-
gram’s execution time) in single-threaded implementation. Whereas calculating
direct succession incurs about 90% of program’s execution time. The majority
of the program’s execution time incurred towards computing direct succession is
because in most real world datasets the count of activities is less than the num-
ber of traces to be scanned for determining direct succession by several orders of
magnitude. Thus, calculating direct succession is the bottleneck for the program
and bringing the benefits of parallelization to it can help in attaining a good
speedup.

3.3 Multithreading Parallelism on CPU

In MATLAB by default implicit multithreading” is provided for functions and
expressions that are combinations of element wise operations. In this type of par-
allelism, multiple instruction streams are generated by one instance of MATLAB

" http://www.mathworks.com/matlabcentral /answers/95958-which-matlab-
functions-benefit-from-multi-threaded-computation.
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session that are accessed by multiple cores®. To achieve implicit multithreading
each element wise operation should be independent of each other. Size of data
should be big enough so that speedup achieved by the concurrent execution
exceeds the time required for partitioning and managing different threads. To
fulfil these requirements and thus implicit parallelism, vectorization® of indepen-
dent and big tasks is essential. Vectorization is one of the most efficient ways
of writing the code in MATLAB [8]. It performs operations on large matri-
ces through a single command at once instead of performing each operations
one by one inside the for loop. An effective way of applying vectorization is
replacing for loops by vector operations. Code using vectorization uses opti-
mised multi-threaded linear algebra libraries and thus generally run faster than
its counterpart for loop [8]. The determination of the bottleneck direct suc-
cession relation can be vectorized using arrayfun'’. MATLAB uses implicit
multithreading using commands such as- arrayfun. We use arrayfun for per-
forming element wise operations on input matrices. arrayfun(func,Al,...,An)
applies the function specified in function handle ‘func’ to each element of equal
sized input arrays. The order of execution of function on the elements is not
specific, thus tasks should be independent of each other. Figure 1(c) shows the
implementation of arrayfun in the algorithm in which the ‘ShiftedFile’ argu-
ment to arrayfun is the input event-log file (‘InputFile’) shifted to left by 1.
Each cell of the ‘ShiftedFile’ contains the immediate succeeding activity of the
activity present in the corresponding cell of ‘InputFile’. Thus direct succession
relation holds between corresponding cells of the ‘InputFile’ and ‘ShiftedFile’.
We apply Cantor pairing function!! [5,6] in ‘func’ as shown in Fig. 1(c) on each
two corresponding elements of the input matrices by which pair of activities
having direct succession relation are uniquely encoded and stored.

3.4 Parallelism on GPU

While a CPU has a handful number of cores, GPU has a large number of cores
along with dedicated high speed memory [9]. GPUs perform poor when given
a piece of code that involves logical branching. They are meant for doing sim-
ple scalar arithmetic (addition, subtraction, multiplication, division) tasks by
hundreds of threads running in parallel [13]. GPU can be accessed by MATLAB
through Parallel Computing Toolbox!?. We can offload discovering of direct suc-
cession relation which consumes major part in the running time of the algorithm
as discussed in Sect.3.2 to GPU. Computation of direct succession does not
involve much of branching across its code, can be transformed into element wise
operations and its computation time far exceeds the transfer time to and from

8 http://in.mathworks.com/company /newsletters/articles/
parallel-matlab-multiple- processors-and-multiple-cores.html.
9 http://in.mathworks.com/help/matlab/matlab_prog/vectorization.html.
10 http://in.mathworks.com/help/matlab /ref/arrayfun.html.
" http://en.wikipedia.org/wiki/Pairing_function.
2 http://in.mathworks.com /discovery /matlab-gpu.html.
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GPU. GPU works with numbers (signed and unsigned integers, single-precision
and double-precision floating point) only thus we convert activities across input
file to distinct positive integers. We make use of arrayfun which is also available
for GPU to do element wise operations on two large arrays. The call to arrayfun
on GPU is massively parallelized [13]. Using arrayfun one call is made to parallel
GPU operation that performs the entire calculation instead of making separate
calls for each pair of elements. Also the data transfer overheads are incurred
just once instead on each individual operation. GPU implementation is same as
CPU multi-threaded implementation with the difference of one of the arguments
of arrayfun already on GPU (with gpuArray) to compute direct succession on
GPU. The results are brought back to CPU through gather.

4 Experimental Dataset

We conduct experiments on 2 real world datasets — Business Process Intelli-
gence 2013 (BPI 2013)'3 and Business Process Intelligence 2014 (BPI 2014).
BPI 2013 dataset contains logs of VINST incident and problem management sys-
tem. We consider two attributes from VINST case incidents log dataset namely,
Problem Number to map as Case ID and Sub-status to map as Activity. The
dataset contains 13 unique activities, 7554 traces and 65533 events. BPI 2014
contains Rabobank Group ICT data. We map attribute Incident ID as the Case
ID and IncidentActivity_Type as Activity in the Detail Incident Activity log. It
consists of 39 unique activities, 46616 traces and 466737 events.

We create synthetic dataset due to lack of availability of very large real world
data for research purposes (much larger and diverse than the BPI 2013 and BPI
2014 dataset). We first randomly define relations (causal, parallel, unrelated)
between all the activities. We then use a half normal distribution with a mean
and standard deviation to randomly generate the length of each trace. We create
dataset A with 20 activities, standard deviation 10, mean 20 and dataset B
with 50 activities, standard deviation 25, mean 50. To gain insights into the
performance of parallelization strategies with different dataset sizes, each dataset
is recorded for increasing trace counts. For CPU, datasets A and B are generated
with trace counts 500, 2000, 8000, 32000 and 128000. Since GPUs are designed to
work with large computationally intensive data [13], we generate larger dataset
A and B with trace counts 10000, 50000, 250000, 1250000 and 6250000. We
make our programs (MATLAB code) and synthetic data generation code publicly
available!® so that our experiments can be replicated and used for benchmarking
and comparison.

5 Experimental Settings and Results

Table 1 displays the hardware and software configuration of the computer use for
testing. We perform the experiments after closing the background applications

13 d0i:10.4121/500573e6-accc-4b0c-9576-aa5468b10cee.
1 0i:10.4121 /uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35.
5 http://bit.ly/1LFIqyM.
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that can affect the execution time of the MATLAB programs. We measure exe-
cution time using two MATLAB functions, namely tic which starts stopwatch
timer and toc that displays the elapsed time. For all the implementations, we
record time that includes both the computations involved and data transfers
to and from workers or GPU. Implicit multithreading in MATLAB uses all the
available cores accessible to MATLAB. We run the program using parfor after
it is connected to specific number of workers, thus not recording time to start the
parallel pool. Implicit multithreading in MATLAB uses threads equal to number
of logical processor when hyperthreading'® is enabled or uses threads equal to
number of physical cores when there is no hyperthreading. The CPU that we
use for performing experiments has hyperthreading enabled leading to access of
20 threads by MATLAB. parfor construct by default access only physical cores.
Thus, in the experiments we access upto 10 workers. We calculate the speedup
as S =To1a/Thew where T4 is old execution time and T}, is the new execution
time with improvement!'”. We set the speedup value to 1x for implementations
whose execution time is considered as T,;q4.

Table 1. Machine hardware and software configuration used for experiments

Parameter Value

CPU Intel (R) Xeon(R) CPU E5-2670v2 @ 2.50GHz
Physical Cores 10

Logical Cores 20

Available Memory | 66 GB

Operating System | Linux, 64 bit
Graphics Card NVIDIA Tesla K40c
GPU Cores 2880

GPU Memory 12 GB

MATLAB Version | R2014b

Figures2 and 3 shows the speedup achieved due to parfor and multi-
threaded parallelism on Alpha Miner algorithm over CPU with T4 being time
taken by single-threaded implementation. In Fig. 2 speedup is shown at highest
trace count 128000 for dataset A and B. As shown in Fig. 2, using 2 workers
good speedup values are obtained with increase in datasize, ranging from 1.55x
in the smallest dataset (BPI 2013) to 6.04x in the largest dataset (dataset B).
We observe with 2 workers performance improves with increase in datasize. We
expect the performance to double using 4 workers but it ranges from minimum
value of 2.19x (BPI 2013) to maximum of 8.60x (dataset B). Similar effect is

16 http://www.intel.in/content /www/in/en/architecture-and-technology/
hyper-threading/hyper-threading-technology.html.
7 http://en.wikipedia.org/wiki/Speedup.
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observed with further increase in workers with speedup values increasing mar-
ginally. Marginal increase in performance happens as adding more workers leads
to more communication overheads eventually reducing the gains of parallelism'®.
In fact, over the largest dataset B, performance degrades with increase in number
of workers. Although due to largest size, dataset B involves maximum computa-
tions, overheads of calling workers and data transfers will also be maximum in

dat

aset B. We observe constant drop in speedup values after adding more than

4 workers on dataset B due to large communication overheads associated with

workers on it.
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Communication overheads also outweighs benefits of parallelism when com-
putations are too less i.e. while working with smaller dataset. Figure 3 reveals
that speedup value comes to be less than 1x for smallest trace count (500) in
dataset A for 10 workers. In Fig. 3, speedup values increases with increase in both
trace count and worker within dataset A and dataset B till the time computa-
tion time outweighs communication overheads with workers. We observe that
with 20 logical cores available on machine, CPU utilisation grows approximately
by 10 % with each increase in two workers on the use of parfor. As observed
from Figs.2 and 3, highest speedup is always achieved through multi-threaded
parallelism. This can be attributed to the fact that mulithreading does not incur
the cost of creating separate processes for each worker. Use of shared memory
by multi-cores saves the communication and data transfer costs.

We further accelerate the algorithm on GPU after optimising it on multi-core
CPU. We choose the CPU multi-threaded implementation that is implemented
in the same manner as the GPU implementation for making comparisons to
GPU. In Figs. 4 and 5 speedup gained by GPU is calculated with T,;; being the
exeution time of multi-threaded CPU implementation. Speedup values achieved
are shown in Fig.4 which comes out to be significant in every dataset going
as far as 39.3x. Figure) reveals that within a given dataset with increase in
trace count, GPU performance improves. The penalty of overheads associated
with data transfers to and from GPU decreases with increase in datasize, hence
speedup value improves with increase in trace count. Based on our experimen-
tal analysis and insights, we believe that the performance will further increase
with increase in trace count. At trace count 6250000 in dataset B, the size of
‘InputFile’ transferred on GPU exceeds the memory limit of GPU. Thus ‘Input-
File’ is broken into two parts and direct succession computed separately for each
part. Hence we infer that GPU memory limits should be taken into account
while working with GPU. The line chart in Fig. 5 reveals that performance on
dataset B grows relatively slower than on dataset A. Alpha Miner on dataset B

50

39.3
34.3
30
20
15
10 8.6
1 I 1 1 1
0

BPI 2013 BPI 2014 Dataset A Dataset B

Speedup

Dataset Type

Multi-threaded CPU [l GPU

Fig. 4. Speedup gain by GPU across various datasets.
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Fig. 5. Speedup gain by GPU with varying dataset size

containing larger number of activities (50) will have more of its time spend on
doing activity intensive tasks like building footprint matrix, maximal set pairs
generation etc. than on dataset A (20 activities). Thus on dataset A there will be
larger part for doing direct succession than on dataset B. Also dataset B spends
more time in transfer of data to and from GPU than dataset A due to bigger
data size. Thus for every trace count point speedup on dataset B comes to be
lower than on dataset A.

6 Conclusion

We conduct a series of experiments on synthetic and real world dataset which
involves running computationally intensive and independent tasks of Alpha
Miner algorithm in parallel on a single machine. We use MATLAB Parallel
Computing Toolbox for using parfor to distribute computations across multiple-
cores and for accessing GPU. On multi-core CPU, implicit multithreading shows
higher speedup than explicit parallelism done through parfor. The communi-
cation overheads associated in parfor for creating different processes for each
worker and copying data to them is significantly larger leading to reduction in
parallelism benefits with addition of each worker. Alpha Miner algorithm runs
with minimum execution time on GPU, showing promising speedups of as far as
39.3%.
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